HOW THE BODY HEALS ITSELF
THE IMMUNE SYSTEM

Cellular damage occurs repeatedly every day
- Sunlight, toxins, chemicals, infections and other irritants damage cells every day
- Cuts, scrapes, blows and other minor injuries cause damage to millions of cells and tissues that must be regenerated and replaced
- Even exercise and exertion can damage cells, causing tenderness (strain) and muscle aches

How does the body recognize damage?
- When cells are damaged the natural balanced chemistry inside the cell is disturbed, causing a shift in healthy metabolism and oxidative stress results
- Oxidative Stress is the natural build-up of oxidant molecules, including free radicals, in the liquid environment inside cells
- Oxidative stress is the condition that sends up red flags to neighboring healthy cells that cells have been damaged in their neighborhood

How does the body repair damage?
- The immune system is activated by oxidative stress to kill the harmful invading organisms
- The immune system also kills and dissolves damaged cells that cannot be repaired (swelling and redness mark this stage)
- The immune system uses oxidative “bullets” to kill invading organisms and dissolve damaged cells and foreign materials

How does the body regenerate tissues?
- Healthy balanced chemistry is restored after all invading organisms are dead and damage is cleaned up (the red flags are turned off)
- Restoration of this chemical balance turns off swelling and redness and stimulates neighboring healthy cells to divide and fill in the missing cells and tissue
- Healthy cells still continue to divide and multiply until the gap has been filled in with healthy new cells

How does the body maintain a healthy chemical balance?
- Antioxidants, in conjunction with “Reductants,” neutralize stray oxidants in order to protect healthy cells
- Antioxidants keep excess oxidants in check, neutralizing them and maintaining correct chemical balance
- Cells produce antioxidants and deploy them to protect vulnerable areas inside and outside of the cell

How are Reductants and oxidants made?
- Reductants and oxidants are “reactive molecules” that are formed naturally in the cell, made from the simple atoms in the salt water that fill and surround the cells
- The Mitochondria inside the cells produce these reactive molecules both oxidants and Reductants and also produce the fuel used to energize the cell (ATP)
- The Reductants pair up with anti-oxidants to protect the cell from excess reactive oxygen and toxins
- The oxidants are the weapon of choice used by the immune system to destroy invading organisms
• Oxidants are also “red flags” that call for help when the cell is damaged or under attack

Why is a healthy chemical balance of “reactive molecules” important?
• Too many oxidants in the cells or blood causes damage and aging to all tissues
• An incorrect balance of Reductants and oxidants can cause the immune system to attack healthy cells, inflame tissues and slows down the healing process
• Too few oxidants will remove the “red flags” and allow damaged, infected and malfunctioning cells (those that should be flagged and destroyed by the immune system) to thrive, divide and spread the damage

How can I help maintain a healthy chemical balance?
• Supplement the raw materials the body needs to support the immune system
 • Raw, green vegetables, juices and herbs
 • Or, anti-oxidants and vitamin supplements
• Use products that have the correct balance of Reductants that enhance the action of the anti-oxidants
• Maintain a proactive and healthy attitude – mental attitude measurably helps balance the body’s chemistry

17. Communications to the Editor, “Rate of Reaction of Superoxide Radical with Chloride-Containing Species”, J Phys Chem v84 p555-7 (1980)
21. Donald T Sawyer, “The Thermodynamics for Dioxygen Species (O2, O2-*, HO2, HOOH and HO-) and Monoxygen species (O, O-*, *OH and OH-) in water and Aprotic Solvents”. Pg 11
22. John Biaglow, et al., “Cellular Protection Against Damage by Hydroperoxides”, Pg. 567
27. B.M. Babior, “Superoxide and Oxidative Killing by Phagocytes”, Pg. 190
30. Lars-Oliver Klotz, et al., “Signaling by Singlet Oxygen in Biological Systems”, Pg. 3
31. Crawford, Suzuki and Davies, "Redox Regulation of Gene Expression", Pg. 21
32. Giron-Calle and Forman, "Cell Ca2+ in Signal Transduction: Modulation in Oxidative Stress", Pg. 106
33. P.A. Bauuerle, "Reactive Oxygen Species as Costimulatory Signals of Cytokine-Induced NF-kappaB Activation Pathways", Pg. 181
34. V.Goossens, et al., "Role of Reactive Oxygen Species in Tumor Necrosis Factor Toxicity", Pg. 245
36. N. Maulic and D.K. Das, "Redox Regulation of Ischemic Adaptation", Pg. 492
37. W.C. Orr and R.S. Sohal, "Oxidative Stress as a Governing Factor in Physiological Aging", Pg. 517